Inactivation Kinetics of Pathogens during Thermal Processing in Acidified Broth and Tomato Purée (pH 4.5)

Author:

Dufort Evann L.1,Sogin Jonathan1,Etzel Mark R.1,Ingham Barbara H.1

Affiliation:

1. Department of Food Science, University of Wisconsin–Madison, 1605 Linden Drive, Madison, Wisconsin 53706, USA

Abstract

ABSTRACT Thermal inactivation kinetics for single strains of Shiga toxin–producing Escherichia coli (STEC), Listeria monocytogenes, and Salmonella enterica were measured in acidified tryptic soy broth (TSB; pH 4.5) heated at 54°C. Inactivation curves also were measured for single-pathogen five-strain cocktails of E. coli O157:H7, L. monocytogenes, and S. enterica heated in tomato purée (pH 4.5) at 52, 54, 56, and 58°C. Inactivation curves were fit using log-linear and nonlinear (Weibull) models. The Weibull model yields the time for a 5-log reduction (t*) and a curve shape parameter (β). Decimal reduction times (D-values) and thermal resistance constants (z-values) from the two models were compared by defining t* = 5D* for the Weibull model. When the log-linear and Weibull models match at the 5-log reduction time, then t* = 5D* = 5D and D = D*. In 18 of 20 strains heated in acidified TSB, D and D* for the two models were not significantly different, although nonlinearity was observed in 35 of 60 trials. Similarly, in 51 of 52 trials for pathogen cocktails heated in tomato purée, D and D* were not significantly different, although nonlinearity was observed in 31% of trials. At a given temperature, D-values for S. enterica << L. monocytogenes < E. coli O157:H7 in tomato purée (pH 4.5). When using the two models, z-values calculated from the D-values were not significantly different for a given pathogen. Across all pathogens, z-values for E. coli O157:H7 and S. enterica were not different but were significantly lower than the z-values for L. monocytogenes. These results are useful for supporting process filings for tomato-based acidified food products with pH 4.5 and below and are relevant to small processors of tomato-based acidified canned foods who do not have the resources to conduct research on and validate pathogen lethality.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Reference30 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3