Incidence, Radioresistance, and Behavior of Psychrobacter spp. in Rabbit Meat

Author:

RODRÍGUEZ-CALLEJA JOSÉ M.1,PATTERSON MARGARET F.2,GARCÍA-LÓPEZ ISABEL1,SANTOS JESÚS A.1,OTERO ANDRÉS1,GARCÍA-LÓPEZ MARÍA-LUISA1

Affiliation:

1. 1Department of Food Hygiene and Food Technology, Veterinary Faculty, University of León, E-24071 León, Spain

2. 2Agriculture, Food, and Environmental Science Division, Department of Agriculture and Rural Development, Queen's University, Belfast, UK

Abstract

The relative incidence of Psychrobacter spp. in rabbit meat, the radioresistance of these bacteria, and the growth of nonirradiated and irradiated psychrobacter isolates, alone and in coculture, during chilled storage of inoculated sterile rabbit meat was investigated. Psychrobacter spp. accounted for 4.2% of the storage psychrotrophic flora of 30 rabbit carcasses. The radiation D10-values of 10 Psychrobacter isolates, irradiated at 4°C in minced rabbit meat, ranged from 0.8 to 2.0 kGy, with significant (P < 0.05) differences among strains. Over 12 days of storage at 4°C, pure cultures of two nonirradiated psychrobacter strains (D10 = 2 kGy) were capable of substantial increases (up to 3 log CFU/g) in sterile rabbit meat, but when the fastest growing strain was cocultured with Pseudomonas fluorescens and Brochothrix thermosphacta isolates, maximum cell densities and growth rates were significantly (P < 0.01) lower. After irradiation (2.5 kGy) of pure cultures in sterile rabbit meat, surviving cells of both Psychrobacter strains decreased for a period of 5 to 7 days and then resumed multiplication that, at day 12, resulted in a similar increase (1.6 to 1.7 log CFU/g) over initial survivor numbers. When irradiated in combination with the spoilage bacteria, one of the strains required 12 days to reach initial numbers. In conclusion, Psychrobacter spp. are radioresistant nonsporeforming bacteria with a low relative incidence among the storage flora of rabbit meat, unable to compete with food spoilage bacteria in this ecosystem and apparently not a major contributor to the spoilage of rabbit meat after irradiation.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3