Effects of Yogurt Ingestion on Mucosal and Systemic Cytokine Gene Expression in the Mouse

Author:

HA C.-L.1,LEE J. H.1,ZHOU H. R.12,USTUNOL Z.1,PESTKA J. J.132

Affiliation:

1. 1Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA

2. 3National Food Safety and Toxicology Center, 234 G. Malcolm Trout Building, Michigan State University, East Lansing, Michigan 48824-1224, USA

3. 2Department of Microbiology, Michigan State University, East Lansing, Michigan 48824-1224, USA

Abstract

To assess the potential for ingestion of yogurt to modulate immunity, its effects on basal gene expression of cytokines in systemic and mucosal sites were determined in mice. Yogurts were manufactured from pasteurized nonfat dry milk using five commercial starter cultures with or without Bifidobacterium sp. and Lactobacillus acidophilus. Treatment mice were fed the AIN-93G diet mixed 1:1 with unheated yogurt or heat-treated yogurt (wt/wt) for 2 and 4 weeks, and control mice were fed the AIN-93G diet mixed 1:1 (wt/wt) with nonfat dry milk. The viability of the various bacterial groups in unheated yogurts was maintained above 106 CFU/g throughout the feeding period. The yogurt-feeding regimens did not significantly affect weight gain. Relative mRNA levels in spleen, mesenteric lymph nodes, or Peyer's patches for the cytokines interferon-γ, tumor necrosis factor-α, interleukin-2, -4, and -6, and the “housekeeping gene” β2-microglobulin were determined by reverse transcriptase–polymerase chain reaction in conjunction with hybridization analysis. Prolonged feeding of some yogurts decreased expression of several cytokine mRNAs, the depression of tumor necrosis factor-α mRNA in the spleen being the most prominent effect. Heat-treated yogurts were more effective in altering cytokine mRNA expression than were unheated yogurts containing viable organisms. Generally, yogurts either had no effect or decreased specific cytokine mRNA in the test organs, regardless of whether they contained Bifidobacterium sp. and L. acidophilus. These results suggest that, in contrast with previous studies in vitro, some yogurt formulations may reduce rather than stimulate basal cytokine expression and that these effects are most prominent in the systemic compartment.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3