Multiplex Real-Time PCR Detection of Fumonisin-Producing and Trichothecene-Producing Groups of Fusarium Species

Author:

BLUHM B. H.1,COUSIN M. A.2,WOLOSHUK C. P.1

Affiliation:

1. 1Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, Indiana 47907, USA

2. 2Department of Food Science, Purdue University, 915 West State Street, West Lafayette, Indiana 47907, USA

Abstract

Some species of Fusarium can produce mycotoxins during food processing procedures that facilitate fungal growth, such as the malting of barley. The objectives of this study were to develop a 5′ fluorogenic (Taqman) real-time PCR assay for group-specific detection of trichothecene- and fumonisin-producing Fusarium spp. and to identify Fusarium graminearum and Fusarium verticillioides in field-collected barley and corn samples. Primers and probes were designed from genes involved in mycotoxin biosynthesis (TRI6 and FUM1), and for a genus-specific internal positive control, primers and a probe were designed from Fusarium rDNA sequences. Real-time PCR conditions were optimized for amplification of the three products in a single reaction format. The specificity of the assay was confirmed by testing 9 Fusarium spp. and 33 non- Fusarium fungal species. With serial dilutions of purified genomic DNA from F. verticillioides, F. graminearum, or both as the template, the detection limit of the assay was 5 pg of genomic DNA per reaction. The three products were detectable over four orders of magnitude of template concentration (5 pg to 5 ng of genomic DNA per reaction); at 50 ng template per reaction, only the TRI6 and FUM1 PCR products were detected. Barley and corn samples were evaluated for the presence of Fusarium spp. with traditional microbiological methods and with the real-time PCR assay. The 20 barley samples and 1 corn sample that contained F. graminearum by traditional methods of analysis tested positive for the TRI6 and internal transcribedspacer (ITS) PCR products. The five corn samples that tested positive for F. verticillioides by traditional methods also were positive for the FUM1 and ITS PCR products. These results indicate that the described multiplex real-time PCR assay provides sensitive and accurate differential detection of fumonisin- and trichothecene-producing groups of Fusarium spp. in complex matrices.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3