Polymerase Chain Reaction–Mediated Characterization of Molds Belonging to the Aspergillus flavus Group and Detection of Aspergillus parasiticus in Peanut Kernels by a Multiplex Polymerase Chain Reaction

Author:

CHEN RUEY-SHYANG1,TSAY JWU-GUH1,HUANG YU-FEN1,CHIOU ROBIN Y.-Y.1

Affiliation:

1. Graduate Institute of Biotechnology, National Chiayi University, Chiayi, Taiwan

Abstract

The Aspergillus flavus group covers species of A. flavus and Aspergillus parasiticus as aflatoxin producers and Aspergillus oryzae and Aspergillus sojae as koji molds. Genetic similarity among these species is high, and aflatoxin production of a culture may be affected by cultivation conditions and substrate composition. Therefore, a polymerase chain reaction (PCR)-mediated method of detecting the aflatoxin-synthesizing genes to indicate the degree of risk a genotype has of being a phenotypic producer was demonstrated. In this study, 19 strains of the A. flavus group, including A. flavus, A. parasiticus, A. oryzae, A. sojae, and one Aspergillus niger, were subjected to PCR testing in an attempt to detect four genes, encoding for norsolorinic acid reductase (nor-1), versicolorin A dehydrogenase (ver-1), sterigmatocystin O-methyltransferase (omt-1), and a regulatory protein (apa-2), involved in aflatoxin biosynthesis. Concurrently, the strains were cultivated in yeast-malt (YM) broth for aflatoxin detection. Fifteen strains were shown to possess the four target DNA fragments. With regard to aflatoxi-genicity, all seven aflatoxigenic strains possessed the four DNA fragments, and five strains bearing less than the four DNA fragments did not produce aflatoxin. When peanut kernels were artificially contaminated with A. parasiticus and A. niger for 7 days, the contaminant DNA was extractable from a piece of cotyledon (ca. 100 mg), and when subjected to multiplex PCR testing using the four pairs of primers coding for the above genes, they were successfully detected. The target DNA fragments were detected in the kernels infected with A. parasiticus, and none was detected in the sound (uninoculated) kernels or in the kernels infected with A. niger.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3