Reduction of Biogenic Amine Formation Using a Negative Amino Acid–Decarboxylase Starter Culture for Fermentation of Fuet Sausages

Author:

BOVER-CID SARA1,HUGAS MARTA2,IZQUIERDO-PULIDO MARIA1,VIDAL-CAROU M. CARMEN1

Affiliation:

1. 1Department of Nutrition and Food Science—CeRTA, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, E-08028 Barcelona, Spain

2. 2Meat Technology Center—CeRTA, Institute for Food and Agricultural Research and Technology, Granja Camps i Armet s/n, E-17121 Monells, Girona, Spain

Abstract

The ability of Lactobacillus sakei CTC494, a negative amino acid–decarboxylase starter culture, to reduce biogenic amine accumulation during sausage fermentation and storage at 4 and 19°C was studied. The effect on the amine formation of the tyramine producer Lactobacillus curvatus CTC371, as a positive strain, was also examined in comparison to a spontaneous fermentation process without starter culture (control batch). The polyamines spermine, spermidine, and diaminopropane were not influenced by the ripening, and their levels slightly decreased in all the batches throughout the storage. Tyramine, cadaverine, and putrescine were the main amines formed during the ripening. The addition of starter culture resulted in a decrease on the biogenic amine formation, depending on the strain inoculated. A great reduction in tyramine content was achieved when L. sakei CTC494 was inoculated, whereas L. curvatus CTC371 only attenuated tyramine accumulation compared with the control batch. Both starters were able to significantly limit the production of putrescine and cadaverine, and they inhibited tryptamine and phenylethylamine formation by the wild microbial flora. Tyramine levels of the control sausages rose during the storage at both temperatures, whereas those of cadaverine only increased at 19°C. On the contrary, sausages manufactured through the starter controlled fermentation did not show changes of amine contents during the storage. The addition of a proper selected starter culture is advisable to produce safer sausages with low contents of biogenic amines.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3