Altering the Thermal Resistance of Foodborne Bacterial Pathogens with an Eggshell Membrane Waste By-Product†

Author:

POLAND ANGELA L.1,SHELDON BRIAN W.2

Affiliation:

1. 1Wake County Environmental Services, 336 Fayetteville Street Mall, P.O. Box 550, Raleigh, North Carolina 27602

2. 2Department of Poultry Science, Box 7608, North Carolina State University, Raleigh, North Carolina 27695-7608, USA

Abstract

Eggshells from egg-breaking operations are a significant waste disposal problem. Thus, the development of value-added by-products from this waste would be welcomed by the industry. The ability of extracted eggshell membranes containing several bacteriolytic enzymes (i.e., lysozyme and β-N-acetylglucosaminidase) or other membrane components to alter the thermal resistance of gram-positive and gram-negative bacterial pathogens was evaluated. Mid-log phase cells of Salmonella Enteritidis (SE), Salmonella Typhimurium (ST), Escherichia coli O157:H7 (EC), Listeria monocytogenes Scott A (LM), and Staphylococcus aureus (SA) were suspended in 100 ml of 0.1% peptone water (pH 6.9, 107–8 CFU/ml) containing either 0 (control) or 10 g of an eggshell membrane extract and incubated at 37°C for 45 min. Following exposure, membrane-free samples (1.5 ml) were heated in a 56°C (LM, SA), 54°C (SE, ST), or 52°C (EC) water bath from 0 to 14 min in sealed glass reaction vials (12 by 32 mm), and the survivors were recovered on brain heart infusion agar. Population reductions ranging from 27.6% (SA) to 99.8% (LM) (ST, 43.8%; SE, 47.5%; EC, 71.8%) were observed for cells treated for 45 min with extracted membrane, as compared to controls. D-value reductions ranging from 0 (LM) to 87.2% (SE) (SA, 36.7%; EC, 83.3%; ST, 86.3%) were observed when membrane-treated cells were subsequently heat inactivated. The effects of exposure pH, time, temperature, and organic load on membrane activity were also evaluated with Salmonella Typhimurium. Exposure pH (5.0 versus 6.9), time (15 versus 45 min), and temperature (4°C versus 37°C) did not significantly reduce the impact of eggshell membranes on D-values. However, the presence of organic matter (0.1% peptone water versus skim milk) significantly reduced the thermal resistance-reducing capacity of the membranes. These preliminary findings provide information on the potential use of extracted eggshell membranes to alter bacterial heat resistance.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3