High-Pressure Resistance Variation of Escherichia coli O157:H7 Strains and Salmonella Serovars in Tryptic Soy Broth, Distilled Water, and Fruit Juice

Author:

WHITNEY BROOKE M.,WILLIAMS ROBERT C.1,EIFERT JOSEPH1,MARCY JOSEPH1

Affiliation:

1. Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, USA

Abstract

The effect of high pressure on the log reduction of six strains of Escherichia coli O157:H7 and five serovars of Salmonella enterica was investigated in tryptic soy broth, sterile distilled water, and commercially sterile orange juice (for Salmonella) and apple cider (for E. coli). Samples were subjected to high-pressure processing treatment at 300 and 550 MPa for 2 min at 6°C. Samples were plated onto tryptic soy agar directly after pressurization and after being held for 24 h at 4°C. At 300 MPa, little effect was seen on E. coli O157:H7 strains, while Salmonella serovars varied in resistance, showing reductions between 0.26 and 3.95 log CFU/ml. At 550 MPa, E. coli O157:H7 strains exhibited a range of reductions (0.28 to 4.39 log CFU/ml), while most Salmonella populations decreased beyond the detection limit (>5-log CFU/ml reduction). The most resistant strains tested were E. coli E009 and Salmonella Agona. Generally, bacterial populations in fruit juices showed larger decreases than did populations in tryptic soy broth and distilled water. E. coli O157:H7 cultures held for 24 h at 4°C after treatment at 550 MPa showed a significant log decrease as compared with cultures directly after treatment (P ≤ 0.05), while Salmonella serovars did not show this significant decrease (P > 0.05). All Salmonella serovars tested in orange juice treated at 550 MPa for 2 min at 6°C and held for 24 h showed a >5-log decrease, while E. coli O157:H7 strains require a higher pressure, higher temperature, longer pressurization, or a chemical additive to achieve a 5-log decrease.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3