Inactivation of Yersinia pseudotuberculosis, as a Surrogate for Yersinia pestis, by Liquid Biocides in the Presence of Food Residue

Author:

HILGREN J.12,SWANSON K. M. J.1,DIEZ-GONZALEZ F.2,CORDS B.1

Affiliation:

1. 1Ecolab Research, Development, and Engineering, 655 Lone Oak Drive, Eagan, Minnesota 55121

2. 2University of Minnesota, Department of Food Science and Nutrition, St. Paul, Minnesota 55108, USA

Abstract

The efficacy of liquid biocides is influenced by surface cleanliness, treatment time, and temperature. Experiments were completed to measure the impact of these variables on the ability of commercial biocides to inactivate Yersinia pseudotuberculosis ATCC 29910, as a surrogate for Yersinia pestis, in the presence of food residues. The test organism was mixed with water, milk, flour, or egg yolk and then dried onto stainless steel coupons. Coupons were then exposed to sodium hypochlorite, acidified sodium chlorite, a quaternary ammonium compound, an iodophor, hydrogen peroxide, peroxyacetic acid, or a peroxy–fatty acid mixture, for 10 or 30 min at 10, 20, or 30°C. For all biocides except the iodophor, manufacturer-recommended disinfection levels applied for 10 min at 20°C resulted in 5-log reductions of the test organism dried alone or with flour. However, in the presence of whole milk or egg yolk residue, markedly higher sodium hypochlorite, peroxyacetic acid, peroxy–fatty acid mixture, quaternary ammonium compound, and iodophor concentrations were needed to achieve the 5-log reductions. Further, the quaternary ammonium compound was incapable of achieving 5-log reductions in 10 min in the presence of milk and egg yolk residues. Hydrogen peroxide and acidified sodium chlorite disinfection levels (7.5% and 2,500 ppm, respectively) achieved 5-log reductions under all test conditions. These results suggest that commercial disinfectants can adequately decontaminate clean surfaces contaminated with Y. pseudotuberculosis and Y. pestis. These results also provide guidance on the feasibility of overcoming the negative influence of food residues on disinfection by adjusting biocide exposure time, temperature, and concentration.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3