Postprocess Contamination of Flexible Pouches Challenged by In Situ Immersion Biotest

Author:

SONG YOON S.1,HARGRAVES WALTER A.1

Affiliation:

1. Division of Food Processing and Packaging, U.S. Food and Drug Administration, National Center for Food Safety and Technology, 6502 South Archer Road, Summit-Argo, Illinois 60501, USA

Abstract

Packages were evaluated for leaks by determining microbial penetration through microchannels as a function of test organism concentration, location in a retort, and microchannel diameter and length. A flexible pouch was used in an in situ immersion biotest coupled with a state-of-the-art retort. Microchannel diameters of 10 to 661 μm with 3- and 6-mm lengths were created by placing tungsten wires in vacuum heat-sealed flexible pouches. After removing the wires, these pouches were subsequently heat processed under pressure. They were then biotested in cooling water containing 103 and 106 CFU of motile Enterobacter aerogenes per ml for 30 min and were dried immediately after manual unloading. After incubation at 37°C for 3 days, they were visually examined for contamination. The high-temperature retorting process was shown to decrease microchannel diameters by an average of 20%. Generally, the smaller the microchannel diameter, the greater the percent shrinkage. Statistical analysis of the biotesting data showed that microchannel diameter and length had strong effects on microbial penetration (P < 0.01). Microbial concentration had a borderline significant effect (P < 0.05), but the effect of package location in the retort was not significant. At conservative conditions, such as a 3-mm microchannel length and a cooling water contamination level of 106 CFU/ml, the selected microorganism can penetrate microchannels with diameters as small as 7 μm. However, the minimum microchannel diameter for penetration could be as large as 46 μm at practical conditions of 6-mm microchannel length and contamination levels of 103 CFU/ml.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3