Chlorine Resistance of Listeria monocytogenes Biofilms and Relationship to Subtype, Cell Density, and Planktonic Cell Chlorine Resistance

Author:

FOLSOM JAMES P.1,FRANK JOSEPH F.1

Affiliation:

1. Department of Food Science and Technology, University of Georgia, Athens, Georgia 30602-7610, USA

Abstract

Strains of Listeria monocytogenes vary in their ability to produce biofilms. This research determined if cell density, planktonic chlorine resistance, or subtype are associated with the resistance of L. monocytogenes biofilms to chlorine. Thirteen strains of L. monocytogenes were selected for this research based on biofilm accumulation on stainless steel and rep-PCR subtyping. These strains were challenged with chlorine to determine the resistance of individual strains of L. monocytogenes. Planktonic cells were exposed to 20 to 80 ppm sodium hypochlorite in 20 ppm increments for 5 min in triplicate per replication, and the experiment was replicated three times. The number of tubes with surviving L. monocytogenes was recorded for each isolate at each level of chlorine. Biofilms of each strain were grown on stainless steel coupons. The biofilms were exposed 60 ppm of sodium hypochlorite. When in planktonic culture, four strains were able to survive exposure to 40 ppm of chlorine, whereas four strains were able to survive 80 ppm of chlorine in at least one of three tubes. The remaining five strains survived exposure to 60 ppm of chlorine. Biofilms of 11 strains survived exposure to 60 ppm of chlorine. No association of biofilm chlorine resistance and planktonic chlorine resistance was observed; however, biofilm chorine resistance was similar for strains of the same subtype. Biofilm cell density was not associated with chlorine resistance. In addition, biofilms that survived chlorine treatment exhibited different biofilm morphologies. These data suggest that chlorine resistance mechanisms of planktonic cells and biofilms differ, with planktonic chlorine resistance being more affected by inducible traits, and biofilm chlorine resistance being more affected by traits not determined in this study.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3