Survival of Salmonella enterica Typhimurium in Water Amended with Manure

Author:

CEVALLOS-CEVALLOS JUAN M.123,GU GANYU234,RICHARDSON SUSANNA M.23,HU JIAHUAI23,van BRUGGEN ARIENA H. C.23

Affiliation:

1. 1Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral (ESPOL), Km. 30.5 vía Perimetral, Apartado 09-01-5863, Guayaquil, Ecuador

2. 2Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Gainesville, Florida 32610, USA

3. 3Department of Plant Pathology, University of Florida, P.O. Box 110680, Gainesville, Florida 32611, USA

4. 4Virginia Tech, Eastern Shore AREC, 33446 Research Drive, Painter, Virginia 23420-2827, USA

Abstract

Outbreaks of Salmonella enterica have been associated with water sources. Survival of S. enterica in various environments has been studied but survival in water has rarely been attempted. In two separate experiments, we examined the survival of S. enterica Typhimurium in clean spring water at various eutrophication levels and temperatures. In the first experiment, lasting for 135 days, survival of S. enterica (1010 CFU/ml) in water with 0, 50, 100, 500, and 1,000 mg/liter of added carbon at 7, 17, and 27°C was monitored weekly. In the second experiment, lasting for 3 weeks, survival of S. enterica in water at 0, 100, and 200 mg/liter of added carbon and 27°C was studied daily. Each experiment had four replicates. Dissolved organic carbon was measured daily in each experiment. At the beginning, midpoint, and end of the survival study, microbial communities in both experiments were assessed by denaturing gradient gel electrophoresis (DGGE). Even at minimal carbon concentrations, S. enterica survived for at least 63 d. Survival of Salmonella was highly dependent on eutrophication levels (as measured by dissolved organic carbon) and temperature, increasing at high eutrophication levels, but decreasing at high temperatures. Survival was also strongly affected by microbial competition or predation.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3