Cell-Free Preparations of Lactobacillus acidophilus Strain La-5 and Bifidobacterium longum Strain NCC2705 Affect Virulence Gene Expression in Campylobacter jejuni

Author:

MUNDI A.1,DELCENSERIE V.12,AMIRI-JAMI M.1,MOORHEAD S.13,GRIFFITHS M. W.1

Affiliation:

1. 1Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1 and Canadian Research Institute for Food Safety, Guelph, Ontario, Canada N1G 2W1

2. 2Food Sciences Department, Faculty of Veterinary Medicine, University of Liege, Sart-Tilman, B43b Liege, B-4000, Belgium

3. 3School of Engineering, Science and Primary Industries, Waikato Institute of Technology, Hamilton, 3240, New Zealand

Abstract

Campylobacter spp. are among the most commonly reported bacterial causes of acute diarrheal disease in humans worldwide. Potential virulence factors include motility, chemotaxis, colonization ability, adhesion to intestinal cells, invasion and epithelial translocation, intracellular survival, and formation of toxins. Probiotic Lactobacillus and Bifidobacterium strains are known to have an inhibitory effect against the growth of various foodborne pathogens. The objective of this study was to investigate the effect of Lactobacillus acidophilus strain La-5 and Bifidobacterium longum strain NCC2705 cell-free spent media (CFSM) on the expression of virulence genes (cadF, cdtB, flaA, and ciaB) of Campylobacter jejuni strain 81-176 and a luxS mutant, using real-time PCR. Our results demonstrated that the CFSM of both probiotic strains were able to down-regulate the expression of ciaB (ratio of −2.80 and −5.51, respectively) and flaA (ratio of −7.00 and −5.13, respectively) in the wild-type Campylobacter strain. In the luxS mutant, where the activated methyl cycle is disrupted, only the ciaB gene (ratio −7.21) was repressed in the presence of La-5 CFSM. A supplementation of homocysteine to restore the disrupted cycle was able to partially reestablish the probiotic effect of both strains. luxS and the activated methyl cycle might play an active role in the modulation of virulence of C. jejuni by probiotic extracts.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3