In Vitro Assessment of the Susceptibility of Planktonic and Attached Cells of Foodborne Pathogens to Bacteriophage P22-Mediated Salmonella Lysates

Author:

AHN JUHEE1,KIM SONGRAE1,JUNG LAE-SEUNG1,BISWAS DEBABRATA2

Affiliation:

1. 1Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea

2. 2Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA

Abstract

This study was designed to evaluate the lytic activity of bacteriophage P22 against Salmonella Typhimurium ATCC 19585 (Salmonella Typhimurium P22−) at various multiplicities of infections (MOIs), the susceptibility of preattached Salmonella cells against bacteriophage P22, and the effect of P22-mediated bacterial lysates (extracellular DNA) on the attachment ability of Listeria monocytogenes ATCC 7644 and enterohemorrhagic Escherichia coli ATCC 700927 to surfaces. The numbers of attached Salmonella Typhimurium P22− cells were effectively reduced to below the detection limit (1 log CFU/ml) at the fixed inoculum levels of 3 × 102 CFU/ml (MOI = 3.12) and 3 × 103 CFU/ml (MOI = 4.12) by bacteriophage P22. The attached Salmonella Typhimurium P22− cells remained more than 2 log CFU/ml, with increasing inoculum levels from 3 × 104 to 3 × 107 CFU/ml infected with 4 × 108 PFU/ml of P22. The number of preattached Salmonella Typhimurium P22− cells was noticeably reduced by 2.72 log in the presence of P22. The highest specific attachment ability values for Salmonella Typhimurium P22−, Salmonella Typhimurium ATCC 23555 carrying P22 prophage (Salmonella Typhimurium P22+), L. monocytogenes, and enterohemorrhagic E. coli were 2.09, 1.06, 1.86, and 1.08, respectively, in the bacteriophage-mediated cell-free supernatants (CFS) containing high amounts of extracellular DNA. These results suggest that bacteriophages could potentially be used to effectively eliminate planktonic and preattached Salmonella Typhimurium P22− cells with increasing MOI. However, further research is needed to understand the role of bacteriophage-induced lysates in bacterial attachment, which can provide useful information for the therapeutic use of bacteriophage in the food system.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3