Affiliation:
1. 1Ontario Laboratory Network, Canadian Food Inspection Agency, 960 Carling Avenue, Building 22, Central Experimental Farm, Ottawa, Ontario, Canada K1A 0C6
2. 2Bureau of Microbial Hazards, Health Canada, Frederick Banting Building, Tunney's Pasture, Ottawa, Ontario, Canada K1A 0K9
Abstract
A method has been developed for the detection in beef trim of priority Shiga toxin–producing E. coli (STEC) strains, defined as E. coli possessing the virulence factors stx1 and/or stx2 and intimin (eae), with O serogroups O26, O45, O103, O111, O121, O145, or O157. The method is based on recovery of the target bacteria by overnight enrichment in a broth optimized for recovery of O157 and non-O157 STEC, followed by screening using multiplex PCR techniques targeting (i) stx1, stx2, and eae (STE PCR) and (ii) gene sequences associated with the seven priority O serogroups (Poly O PCR), and then direct plating of broth samples positive in both STE and Poly O PCR onto Rainbow agar. Colonies on agar media were screened batchwise for STEC by the STE PCR, and presumptive isolates were characterized using a multiplex PCR and cloth-based hybridization array system targeting key virulence and O serogroup-specific markers. Using one representative strain of each priority O serogroup individually inoculated in beef trim samples, the method exhibited a limit of detection approaching 1 to 2 viable STEC cells per 65 g. None of the uninoculated trim samples produced positive results with either of the screening PCR procedures or on analysis of colonies recovered on plating media. STEC-negative samples were readily identified by screening PCR within 24 h, with a turnaround time of fewer than 4 days for confirmation of positives. The inclusivity and exclusivity characteristics of the screening PCR techniques were verified using a total of 65 different priority STEC strains: 24 nonpriority STEC, 15 non-STEC bacteria, and only those strains bearing the targeted characteristics produced screening PCR-positive results.
Publisher
International Association for Food Protection
Subject
Microbiology,Food Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献