Affiliation:
1. Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
Abstract
ABSTRACT
The growing number of microbial cross-contamination events necessitates the development of novel antimicrobial strategies in the food industry. In this study, a polypropylene nonwoven fabric (PPNWF) was grafted with a natural antimicrobial component, aloe emodin (AE), and its antimicrobial performance was evaluated. The grafted samples (PPNWF-g-AE) were examined using Fourier transform infrared spectroscopy and scanning electron microscopy. AE was effectively grafted onto the surface of the PPNWF through the adsorption covalent effect. Compared with nongrafted PPNWF, the antimicrobial activity of PPNWF-g-AE against Staphylococcus aureus, Escherichia coli, and Candida albicans was significantly enhanced. Scanning electron micrographs confirmed that the inhibitory mechanism of PPNWF-g-AE was the microbicidal function of the grafted AE. These findings indicate that PPNWF-g-AE has potential as an effective antimicrobial material in food applications.
Publisher
International Association for Food Protection
Subject
Microbiology,Food Science