Application of Fluid Modeling To Determine Threshold Leak Size for Liquid Foods

Author:

KELLER SCOTT1,MARCY JOSEPH2,BLAKISTONE BARBARA3,HACKNEY CAMERON4,CARTER W. HANS5,LACY GEORGE6

Affiliation:

1. 1Ball Corporation, Metal Container Operations, 6279 Tri-Ridge Boulevard, Suite 210, Loveland, Ohio 45140

2. 2Department of Food Science and Technology, 6279 Tri-Ridge Boulevard, Suite 210, Loveland, Ohio 45140

3. 3Graham Packaging Company, York, Pennsylvania

4. 4College of Agriculture, Forestry and Consumer Sciences, West Virginia University, Morgantown, West Virginia

5. 5Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA

6. 6Department of Plant Pathology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Abstract

In this study, the mechanism by which a package defect converts to a leaker was examined in an effort to develop a relationship between threshold leak size and loss of package sterility. The threshold leak size is the hole size at which the onset of leakage occurs. The threshold pressure is the pressure required to initiate a leak. Leak initiation was studied in terms of the interaction between three components: liquid attributes of liquid food products, defect size, and pressures required to initiate liquid flow. Liquid surface tension, viscosity, and density values were obtained for 16 liquids. The imposed pressures required to initiate flow through microtubes with interior diameters of 0, 2, 5, 7, 10, 20, and 50 μm were measured with the use of 63 test cells filled with safranin red dye, tryptic soy broth, and distilled water with surface tensions of 18.69, 44.09, and 64.67 mN/m, respectively. Significant differences (P < 0.05) between threshold pressures observed for safranin red dye, tryptic soy broth, and distilled water were found. Liquids with low surface tensions, such as safranin red dye, required significantly lower threshold imposed pressures than did liquids with high surface tensions, such as distilled water (P < 0.05). An equation to quantify the relationship between liquid surface tension, threshold imposed pressure, and defect size was developed. Threshold pressures observed were not significantly different (P > 0.05) from those predicted by the equation. Imposed pressures and vacuums generated within packages during random vibration and sweep resonance tests were measured for brick-style aseptic packages (250 ml), metal cans (76.2 by 114.3 mm [425 ml]), 1-qt gable-top packages (946 ml), 0.5-gal gable-top packages (1.89 liters), and 1-gal milk jugs (4.25 liters). Significant differences between packages were found with respect to observed generated pressures during vibration testing (P < 0.05). An equation to calculate threshold size on the basis of liquid surface tension and imposed pressure was established.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Reference33 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3