Nisin in Milk Sensitizes Bacillus Spores to Heat and Prevents Recovery of Survivors†

Author:

WANDLING L. R.1,SHELDON B. W.2,FOEGEDING P. M.1

Affiliation:

1. 1Department of Food Science, Box 7624, North Carolina State University, Raleigh, North Carolina 27695-7624

2. 2Department of Poultry Science, Box 7608, North Carolina State University, Raleigh, North Carolina 27695-7608, USA

Abstract

Decimal reduction times (D values) were determined for Bacillus cereus T spores and B. stearothermophilus ATCC 12980 spores in skim milk supplemented with various concentrations (0, 2,000, and 4,000 IU/ml) of the bacteriocin nisin by using an immersed, sealed capillary tube procedure. For both organisms, the addition of nisin lowered the apparent D values. For B. cereus, the addition of 2,000 IU of nisin per ml to skim milk before heating significantly (P ≤ 0.05) lowered the apparent D value compared to the control treatment. The D values at 97°C were 7.0, 4.8, and 4.7 min for the control and 2,000- and 4,000-IU/ml nisin treatments, respectively. At 103°C, the D values were 1.5, 0.85, and 0.88 min for the control and 2,000-and 4,000-IU/ml nisin treatments. When calculated across both nisin treatments, the mean reductions in apparent D values at 97, 100, and 103°C due to addition of nisin in comparison to the controls were 32, 20, and 42%, respectively. The zD values for B. cereus ranged from 8.0 to 8.9°C. With B. stearothermophilus, the apparent D values at 130°C were reduced by 13 and 21% respectively, because of the presence of 2,000 or 4,000 IU of nisin per ml. The D values were 16.0, 13.8, and 12.5 s for the control and 2,000- and 4,000-IU/ml nisin treatments, respectively. There was a significant (P ≤ 0.05) decrease in the apparent D value between the control and 4,000-IU/ml treatment. Overall, log populations of survivors for B. stearothermophilus compared to the control were lower at any given sampling time due to the presence of nisin. The results of these studies suggest that spore control is likely due to enhanced sensitivity of spores to heat and the presence of residual nisin in the recovery medium that could prevent outgrowth of survivors.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3