Rapid and Sensitive Detection of Salmonella Typhimurium on Eggshells by Using Wireless Biosensors

Author:

CHAI YATING1,LI SUIQIONG1,HORIKAWA SHIN1,PARK MI-KYUNG1,VODYANOY VITALY2,CHIN BRYAN A.1

Affiliation:

1. 1Materials Research and Education Center, Auburn University, Auburn, Alabama 36849, USA

2. 2Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, USA

Abstract

This article presents rapid, sensitive, direct detection of Salmonella Typhimurium on eggshells by using wireless magnetoelastic (ME) biosensors. The biosensor consists of a freestanding, strip-shaped ME resonator as the signal transducer and the E2 phage as the biomolecular recognition element that selectively binds with Salmonella Typhimurium. This ME biosensor is a type of mass-sensitive biosensor that can be wirelessly actuated into mechanical resonance by an externally applied time-varying magnetic field. When the biosensor binds with Salmonella Typhimurium, the mass of the sensor increases, resulting in a decrease in the sensor's resonant frequency. Multiple E2 phage–coated biosensors (measurement sensors) were placed on eggshells spiked with Salmonella Typhimurium of various concentrations (1.6 to 1.6 × 107 CFU/cm2). Control sensors without phage were also used to compensate for environmental effects and nonspecific binding. After 20 min in a humidity-controlled chamber (95%) to allow binding of the bacteria to the sensors to occur, the resonant frequency of the sensors was wirelessly measured and compared with their initial resonant frequency. The resonant frequency change of the measurement sensors was found to be statistically different from that of the control sensors down to 1.6 × 102 CFU/cm2, the detection limit for this work. In addition, scanning electron microscopy imaging verified that the measured resonant frequency changes were directly related to the number of bound cells on the sensor surface. The total assay time of the presented methodology was approximately 30 min, facilitating rapid detection of Salmonella Typhimurium without any preceding sampling procedures.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3