Prioritization of Chicken Meat Processing Interventions on the Basis of Reducing the Salmonella Residual Relative Risk

Author:

GONZÁLEZ ROLANDO J.1,SAMPEDRO FERNANDO2,FEIRTAG JOELLEN M.1,SÁNCHEZ-PLATA MARCOS X.3,HEDBERG CRAIG W.2

Affiliation:

1. Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, Minnesota 55108

2. School of Public Health, University of Minnesota, 420 Delaware Street S.E., Minneapolis, Minnesota 55455 (ORCID: https://orcid.org/0000-0003-1155-2751 [F.S.])

3. Department of Animal and Food Sciences, Texas Tech University, Box 42141, Lubbock, Texas 79409, USA

Abstract

ABSTRACT Protecting public health by controlling Salmonella in chicken meat products continues to be a challenge to both industry and policymakers. Studies evaluating the combined use of commercially available antimicrobial interventions are scarce. The aim of this work was to develop a risk-based prioritization framework to rank chicken meat processing interventions that achieve the greatest Salmonella relative risk reduction. A baseline model characterizing the current U.S. broiler industry food safety intervention practices was created from direct observation of processes and expert elicitation. Results showed the combination of chlorine at the bird wash station and peroxyacetic acid at the on-line reprocessing and chill stages as the most common U.S. processing scenario. Irradiation at packaging and acidified sodium chlorite at evisceration were the most effective single processing interventions (98.8 and 91.6% risk reduction, respectively); however, no single intervention was able to comply with the current Food Safety and Inspection Service Salmonella postchill performance standards. The combination of peroxyacetic acid in at least one of the chicken processing stages with the current set of U.S. baseline interventions achieved >99% Salmonella relative risk reduction and ensured Food Safety and Inspection Service compliance. Adding more than one intervention to the U.S. current practice did not enhance (<2%) the overall Salmonella risk reduction. This study can help poultry processors to prioritize food safety interventions to maximize Salmonella reduction and public health protection.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3