Biocidal Activity of Fast Pyrolysis Biochar against Escherichia coli O157:H7 in Soil Varies Based on Production Temperature or Age of Biochar

Author:

GURTLER JOSHUA B.1,MULLEN CHARLES A.2,BOATENG AKWASI A.2,MAŠEK ONDŘEJ3,CAMP MARY J.4

Affiliation:

1. U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Food Safety and Intervention Technologies Research Unit, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551 (ORCID: https://orcid.org/0000-0001-5844-7794 [J.B.G])

2. U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Sustainable Biofuels and Co-Products Research Unit, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551

3. UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Crew Building Alexander Crum Brown Road, Edinburgh EH9 3FF, UK

4. U.S. Department of Agriculture, Agricultural Research Service, Northeast Area, 10300 Baltimore Avenue, Building 003, BARC-West, Beltsville, Maryland 20705-2350, USA

Abstract

ABSTRACT Soils in which fresh produce is grown can become contaminated with foodborne pathogens and are sometimes then abandoned or removed from production. The application of biochar has been proposed as a method of bioremediating such pathogen-contaminated soils. The objectives of the present study were to evaluate three fast-pyrolysis–generated biochars (FPBC; pyrolyzed in house at 450, 500, and 600°C in a newly designed pyrolysis reactor) and 10 United Kingdom Biochar Research Center (UKBRC) standard slow-pyrolysis biochars to determine their effects on the viability of four surrogate strains of Escherichia coli O157:H7 in soil. A previously validated biocidal FPBC that was aged for 2 years was also tested with E. coli to determine changes in antibacterial efficacy over time. Although neither the UKBRC slow-pyrolysis biochars or the 450 and 500°C FPBC from the new reactor were antimicrobial, the 600°C biochar was biocidal (P < 0.05); E. coli populations were significantly reduced at 3 and 3.5% biochar concentrations (reductions of 5.34 and 5.84 log CFU/g, respectively) compared with 0.0 to 2.0% biochar concentrations. The aged 500°C FPBC from the older reactor, which was previously validated as antimicrobial, lost efficacy after aging for 2 years. These results indicate that the biocidal activity of FPBC varies based on production temperature and/or age. HIGHLIGHTS

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3