Adhesion of Aeromonas hydrophila to Water Distribution System Pipes after Different Contact Times

Author:

ASSANTA MAFU AKIER12,ROY DENIS1,MONTPETIT DIANE1

Affiliation:

1. 1Agriculture and Agri-Food Canada, Food Research and Development Centre, 3600, Casavant Boulevard West, St-Hyacinthe, Quebec, Canada, J2S 8E3

2. 2Canadian Food Inspection Agency, Health of Animal and Food Laboratory, 3400, Casavant Boulevard West, St-Hyacinthe, Quebec, Canada, J2S 8E3

Abstract

Scanning electron microscopy observation was used to investigate the ability of Aeromonas hydrophila to attach to various water distribution pipe surfaces, such as stainless Steel, copper, and polybutylene, after different contact times at ambient and storage temperatures. Surface energy value of each surface was estimated by contact angle measurements using water, α-bromonaphthalene, and dimethyl sulfoxide. Our results indicated that Aeromonas cells could easily attach to all surface types after exposures as short as 1 or 4 h at both temperatures (4 and 20°C). Polybutylene, a low-energy surface (41.2 mJ-m−2), followed by stainless Steel (65.7 mJ-m−2), was most colonized by Aeromonas cells, whereas few cells were observed on copper, which has a surface energy of 45.8 mJ-m−2. Extracellular materials could also be observed on polybutylene surfaces, especially after 1 and 4 h of exposure at the refrigeration temperature.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3