Fate of Escherichia coli O157:H7 in Ground Apples Used in Cider Production

Author:

FISHER TOMEKA L.1,GOLDEN DAVID A.1

Affiliation:

1. The University of Tennessee, Agricultural Experiment Station, Department of Food Science and Technology, P.O. Box 1071, Knoxville, Tennessee 37901-1071, USA

Abstract

Survival of Escherichia coli O157:H7 in ground Golden Delicious, Red Delicious, Rome, and Winesap apples stored at 4, 10, and 25°C was determined. E. coli O157:H7 populations were monitored for up to 18 days (4°C), 12 days (10°C), and 5 days (25°C), when mold contamination became visible. At 25°C, Red Delicious apples supported survival of E. coli O157:H7 better (P < 0.05) than the other cultivars, followed by Golden Delicious and Rome apples, which were not statistically different (P > 0.05). Winesap apples were the least favorable (P < 0.05) for survival of E. coli O157:H7 at 25°C. E. coli O157:H7 was recovered at similar rates from Golden Delicious and Red Delicious apples, (P > 0.05), but pathogen populations increased in both cultivars (P < 0.05) during storage at 25°C. At 10°C, survival of E. coli O157:H7 was poorest (P < 0.05) in ground Red Delicious apples, while there was no significant difference in survival of E. coli O157:H7 among ground Golden Delicious, Rome, or Winesap cultivars (P > 0.05). When stored at 4°C, Golden Delicious and Rome apples were not statistically different in supporting survival of the pathogen (P > 0.05) and there was no statistical difference in the recovery of E. coli O157:H7 from ground Red Delicious, Rome, and Winesap apples (P > 0.05). In general, apple pH increased during storage and was associated with mold growth. Results of this investigation indicate that there is no trend toward a particular apple cultivar supporting survival of E. coli O157:H7. However, variation in apple pH during storage can negatively or positively influence E. coli O157:H7 survival at 25 °C.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3