Reduction of Listeria monocytogenes on Green Peppers (Capsicum annuum L.) by Gaseous and Aqueous Chlorine Dioxide and Water Washing and Its Growth at 7°C†

Author:

HAN Y.1,LINTON R. H.1,NIELSEN S. S.1,NELSON P. E.1

Affiliation:

1. Department of Food Science, Purdue University, West Lafayette, Indiana 47907-1160, USA

Abstract

Reduction of Listeria monocytogenes Scott A on uninjured and injured surfaces of green peppers after 0.3- and 3-mg/liter gaseous and aqueous ClO2 treatment and water washing for 10 min at 20°C was studied. Growth of the L. monocytogenes untreated or treated with 0.6 mg/liter ClO2 gas for 30 min at 20°C on green peppers also was investigated. A membrane-surface-plating method was used for resuscitation and enumeration of L. monocytogenes treated with ClO2. The bacterial viability on pepper surfaces was visualized using confocal laser scanning microscopy (CLSM). Live and dead cells of L. monocytogenes were labeled with a fluorescein isothiocyanate-labeled antibody and propidium iodide, respectively. More than 6 log CFU/5 g L. monocytogenes on uninjured surfaces and about 3.5 log CFU/5 g on injured surfaces were inactivated by both 3-mg/liter and 0.6-mg/liter ClO2 gas treatments. The 3-mg/liter aqueous ClO2 treatment achieved 3.7- and 0.4-log reductions on uninjured and injured surfaces, respectively; whereas, water washing alone showed 1.4- and 0.4-log reductions, respectively. ClO2 gas treatment was the most effective in reducing L. monocytogenes on both uninjured and injured green pepper surfaces, when compared with aqueous ClO2 treatment and water washing. The significant difference (P < 0.05) between log reductions on uninjured and injured surfaces and the results from CLSM analysis suggested that injured surfaces protected more bacteria from sanitation treatments than did uninjured surfaces. Not only could L. monocytogenes grow on green pepper surfaces at 7°C, bacteria that survived the 0.6-mg/liter ClO2 gas treatment also could grow.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3