Cold Temperature Adaptation and Growth of Microorganisms†

Author:

BERRY ELAINE D.1,FOEGEDING PEGGY M.1

Affiliation:

1. Department of Food Science, North Carolina State University, Raleigh, North Carolina, 27695-7624, USA

Abstract

Most microorganisms must accommodate a variety of changing conditions and stresses in their environment in order to survive and multiply. Because of the impact of temperature on all reactions of the cell, adaptations to fluctuations in temperature are possibly the most common. Widespread in the environment and well-equipped for cold temperature growth, psychrophilic and psychrotrophic microorganisms may yet make numerous adjustments when faced with temperatures lower than optimum. Phospholipid and fatty acid alterations resulting in increased membrane fluidity at lower temperatures have been described for many cold tolerant microorganisms while others may make no similar adjustment. While the enzymes of cold growing bacteria have been less extensively studied than those of thermophilic bacteria, it appears that function at low temperature requires enzymes with flexible conformational structure, in order to compensate for lower reaction rates. In many organisms, including psychrophilic and psychrotrophic bacteria, specific sets of cold shock proteins are induced upon abrupt shifts to colder temperatures. While this cold shock response has not been fully delineated, it appears to be adaptive, and may function to promote the expression of genes involved in translation when cells are displaced to lower temperatures. The cold shock response of Escherichia coli has been extensively studied, and the major cold shock protein CspA appears to be involved in the regulation of the response. Upon cold shock, the induction of CspA and its counterparts in most microorganisms studied is prominent, but transient; studies of this response in some psychrotrophic bacteria have reported constitutive synthesis and continued synthesis during cold temperature growth of CspA homologues, and it will be interesting to learn if these are common mechanisms of among cold tolerant organisms. Psychrotrophic microorganisms continue to be a spoilage and safety problem in refrigerated foods, and a greater understanding of the physiological mechanisms and implications of cold temperature adaptation and growth should enhance our ability to design more effective methods of preservation.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3