Proinflammatory Cytokine and Nitric Oxide Induction in Murine Macrophages by Cell Wall and Cytoplasmic Extracts of Lactic Acid Bacteria

Author:

TEJADA-SIMON MARIA VICTORIA1,PESTKA JAMES J.123

Affiliation:

1. 1Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA

2. 2National Center for Food Safety and Toxicology, Michigan State University, East Lansing, Michigan 48824-1224, USA

3. 3Department of Microbiology, Michigan State University, East Lansing, Michigan 48824-1224, USA

Abstract

Cells from a number of bacterial genera have been shown to possess mitogenic and polyclonal activating properties when cultured with cells of the immune system. Based on previously reported health immune-enhancing effects of fermented dairy products, we tested the potentiating effects of representative lactic acid bacteria and their extracts on leukocyte function. Specifically, the effects of in vitro exposure to heat-killed cells of Bifidobacterium, Lactobacillus acidophilus, L. bulgaricus, L. casei, L. gasseri, L. helveticus, L. reuteri, and Streptococcus thermophilus, their cell walls, and their cytoplasmic extracts on proliferation as well as cytokine and nitric oxide (NO) production were examined in the RAW 264.7 macrophage cell line. A similar strategy was applied to murine cultures composed of peritoneal, spleen, and Peyer's patch cells. Both the cell wall and cytoplasmic fractions of lactic acid bacteria were able to stimulate cloned macrophages to produce significant amounts of tumor necrosis factor-α, (interleukin) IL-6, and NO. Pronounced enhancement of IL-6 production by peritoneal cells was observed when cultured with those extracts, whereas, effects were not noted in spleen and Peyer's patch cell cultures from mice. Based on the results, it appears that, as a group, the lactic acid bacteria were capable of stimulating macrophages and possibly other immune cells to produce cytokines and NO, and both their cell walls and cytoplasm contributed to these capacities.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3