Activity Retention after Nisin Entrapment in a Polyethylene Oxide Brush Layer

Author:

AUXIER JULIE A.1,SCHILKE KARL F.1,McGUIRE JOSEPH1

Affiliation:

1. School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, USA

Abstract

The cationic, amphiphilic peptide nisin is an effective inhibitor of gram-positive bacteria whose mode of action does not encourage pathogenic resistance, and its proper incorporation into food packaging could enhance food stability, safety, and quality in a number of circumstances. Sufficiently small peptides have been shown to integrate into otherwise nonfouling polyethylene oxide (PEO) brush layers in accordance with their amphiphilicity and ordered structure, including nisin, and we have recently shown that nisin entrapment within a PEO layer does not compromise the nonfouling character of that layer. In this work we test the hypothesis that surface-bound, pendant PEO chains will inhibit displacement of entrapped nisin by competing proteins and, in this way, prolong retention of nisin activity at the interface. For this purpose, the antimicrobial activity of nisin-loaded, PEO-coated surfaces was evaluated against the gram-positive indicator strain, Pediococcus pentosaceous. The retained antimicrobial activity of nisin layers was evaluated on uncoated and PEO-coated surfaces after incubation in the presence of bovine serum albumin for contact periods up to 1 week. Nisin-loaded, uncoated and PEO-coated samples were withdrawn at selected times and were incubated on plates inoculated with P. pentosaceous to quantify nisin activity by determination of kill zone radii. Our results indicate that nisin activity is retained at a higher level for a longer period of time after entrapment within PEO than after direct adsorption in the absence of PEO, owing to inhibition of nisin exchange with dissolved protein afforded by the pendant PEO chains.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Reference2 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3