The Potential Application of Vanillin in Preventing Yeast Spoilage of Soft Drinks and Fruit Juices

Author:

FITZGERALD DANIEL J.1,STRATFORD MALCOLM2,GASSON MICHAEL J.1,NARBAD ARJAN1

Affiliation:

1. 1Food Safety Science Division, Institute of Food Research, Norwich Research Park, Colney Lane, Norwich, Norfolk NR4 7UA, UK

2. 2Food Processing Group, Unilever R&D, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK

Abstract

The preservative effect of vanillin, the major constituent of vanilla beans, was studied in an apple juice and peach-flavored soft drink. Vanillin activity was tested against Saccharomyces cerevisiae and Candida parapsilosis at 8 and 25°C over an 8-week storage period. Initial results in laboratory media indicated minimum inhibitory concentration values of 17 and 9 mM vanillin for the two yeast strains. Concentrations of 20 and 10 mM vanillin, respectively, were required to achieve complete inhibition of both yeast strains inoculated at a level of ~104 CFU/ml in the apple juice and peach-flavored soft drink over the 8-week storage at 25°C. These effective levels were reduced to 5 and 1 mM, when the storage temperature was reduced to 8°C. A biocidal effect against both yeasts was observed within 96 h to 8 weeks, with vanillin concentrations of 5 to 40 mM depending on the beverage and the storage temperatures used. The increased activity of vanillin in the peach-flavored soft drink (pH 3.1) in comparison to the apple juice (pH 3.5) is probably a result of the lower intrinsic pH of the former; however, variation in vitamin and mineral levels or the presence of other phenolic compounds between the two drinks might also have contributed to the observed differences. Furthermore, the increased activity at the lower temperature could be linked to the combination of the increased membrane fluidity and the membrane-perturbing action of vanillin. We conclude that vanillin has the potential to preserve fruit juices and soft drinks that are low in both lipid and protein content against S. cerevisiae and C. parapsilosis.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3