Thermal Inactivation of Listeria monocytogenes and Salmonella during Water and Steam Blanching of Vegetables

Author:

Ceylan Erdogan1,McMahon Wendy1,Garren Donna M.2

Affiliation:

1. Mérieux NutriSciences, 3600 Eagle Nest Drive, Crete, Illinois 60417; and

2. American Frozen Food Institute, 2000 Corporate Ridge, Suite 1000, McLean, Virginia 22102, USA

Abstract

ABSTRACT Thermal inactivation of Listeria monocytogenes and Salmonella was evaluated on peas, spinach, broccoli, potatoes, and carrots that were treated with hot water and steam. One gram-positive bacterium, L. monocytogenes, and one gram-negative bacterium, Salmonella, were selected as pertinent human pathogens for evaluation. Samples were inoculated with a composite of five strains each of L. monocytogenes and Salmonella to achieve approximately 108 to 109 CFU/g. Inoculated samples were treated with hot water at 85 and 87.8°C and with steam at 85 and 96.7°C for up to 3.5 min. A greater than 5-log reduction of L. monocytogenes and Salmonella was achieved on all products within 0.5 min by hot water blanching at 85 and 87.8°C. Steam blanching at 85°C reduced Salmonella populations by greater than 5 log on spinach and peas within 2 min and on carrots and broccoli within 3.5 min. Populations of Salmonella were reduced by more than 5 log within 1 min on carrot, spinach, and broccoli and within 2 min on peas by steam blanching at 96.7°C. Steam blanching at 85°C reduced L. monocytogenes populations by more than 5 log on carrots and spinach within 2 min and on broccoli and peas within 3.5 min. L. monocytogenes populations were reduced more than 5 log within 1 min on carrot, spinach, peas and broccoli by steam blanching at 96.7°C. Longer treatment times and higher temperatures were required for steam-blanched samples than for samples blanched with hot water. Results suggest that hot water and steam blanching practices commonly used by the frozen vegetable industry will achieve the desired 5-log lethality of L. monocytogenes and Salmonella and will enhance microbiological safety prior to freezing.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Reference38 articles.

1. Influence of aqueous ozone, blanching and combined treatments on microbial load of red bell peppers, strawberries and watercress;Alexandre;J. Food Eng,2011

2. Guidelines for using Enterococcus faecium NRRL B-2354 as a surrogate microorganism in almond process validation;Almond Board of California,2014

3. Hot water treatments to inactivate Escherichia coli O157:H7 and Salmonella in mung bean seeds;Bari;J. Food Prot,2008

4. Quality indicators in blanched, frozen, stored vegetables;Barrett;Food Technol,1995

5. Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables;Beuchat;Microbes Infect,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3