UV Inactivation, Liquid-Holding Recovery, and Photoreactivation of Escherichia coli O157 and Other Pathogenic Escherichia coli Strains in Water

Author:

SOMMER REGINA1,LHOTSKY MIRANDA1,HAIDER THOMAS2,CABAJ ALEXANDER3

Affiliation:

1. 1Hygiene Institute, University of Vienna, Austria

2. 2Institute of Environmental Hygiene, University of Vienna, Austria

3. 3Institute of Medical Physics and Biostatistics, University of Veterinary Medicine, Vienna, Austria

Abstract

Drinking water, water used in food production and for irrigation, water for fish farming, waste water, surface water, and recreational water have been recently recognized as a vector for the transmission of pathogenic Escherichia coli, especially serotype O157:H7. We investigated the UV (253.7 nm) inactivation behavior and the capability of dark repair (liquid-holding recovery) and photoreactivation of seven pathogenic (including three enterohemorrhagic E. coli) strains and one nonpathogenic strain of E. coli (ATCC 11229) with respect to the use of UV light for water disinfection purposes. Because most bacteria and yeast are known to be able to repair UV damage in their nucleic acids, repair mechanisms have to be considered to ensure safe water disinfection. We found a wide divergence in the UV susceptibility within the strains tested. A 6-log reduction of bacteria that fulfills the requirement for safe water disinfection was reached for the very most susceptible strain O157:H7 (CCUG 29199) at a UV fluence of 12 J/m2, whereas for the most resistant strain, O25:K98:NM, a UV fluence of about 125 J/m2 was needed. Except for one strain (O50:H7) liquid-holding recovery did not play an important role in recovery after UV irradiation. By contrast, all strains, particularly strains O25:K98:NM, O78:K80:H12, and O157:H7 (CCUG 29193), demonstrated photorepair ability. For a 6-log reduction of these strains, a UV fluence (253.7 nm) up to 300 J/m2 is required. The results reveal that the minimum fluence of 400 J/m2 demanded in the Austrian standard for water disinfection is sufficient to inactivate pathogenic E. coli. A fluence of 160 J/m2 (recommendation in Norway) or 250 J/m2 (recommendation in Switzerland) cannot be regarded as safe in that respect.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 159 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3