Inactivation of Salmonella Serovars in Liquid Whole Egg by Heat following Irradiation Treatments†

Author:

ALVAREZ IGNACIO1,NIEMIRA BRENDAN A.2,FAN XUETONG2,SOMMERS CHRISTOPHER H.2

Affiliation:

1. 1Tecnología de los Alimentos, Facultad de Veterinaria, University of Zaragoza, 50013, Zaragoza, Spain

2. 2Eastern Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Food Safety Intervention Technologies Research Unit, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA

Abstract

Salmonella is a frequent contaminant on eggs and is responsible for foodborne illnesses in humans. Ionizing radiation and thermal processing can be used to inactivate Salmonella in liquid whole egg, but when restricted to doses that do not affect egg quality, these technologies are only partially effective in reducing Salmonella populations. In this study, the effect of ionizing radiation in combination with thermal treatment on the survival of Salmonella serovars was investigated. Of the six Salmonella serovars tested, Salmonella Senftenberg was the most resistant to radiation (Dγ = 0.65 kGy) and heat (D55°C = 11.31 min, z = 4.9°C). Irradiation followed by thermal treatment at 55 or 57°C improved the pasteurization process. Radiation doses as low as 0.1 kGy prior to thermal treatments synergistically reduced the D55°C and D57°C of Salmonella Senftenberg 3.6- and 2.5-fold, respectively. The D55°C and D57°C of Salmonella Typhimurium were reduced 2- and 1.4-fold and those of Salmonella Enteritidis were reduced 2- and 1.6-fold, respectively. Irradiation prior to thermal treatment would enable the reduction of heat treatment times by 86 and 30% at 55 and 57°C, respectively, and would inactivate 9 log units of Salmonella serovars.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3