Nonstarter Lactobacilli Isolated from Soft and Semihard Argentinean Cheeses: Genetic Characterization and Resistance to Biological Barriers

Author:

UGARTE MARIANA BUDE1,GUGLIELMOTTI DANIELA1,GIRAFFA GIORGIO2,REINHEIMER JORGE1,HYNES ERICA1

Affiliation:

1. 1Instituto de Lactología Industrial (INLAIN), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe, Argentina

2. 2C.R.A.–Istituto Sperimentale Lattiero Caseario, via Lombardo 11, 26900 Lodi, Italy

Abstract

Nonstarter lactic acid bacteria isolated from Argentinean cheeses were identified and characterized by focusing on their resistance to biological barriers, along with other physiological features of potential interest, in the search for future probiotic organisms. Lactobacilli were enumerated and isolated from semihard and soft cheeses made with multistrain Streptococcus thermophilus starters. Lactobacilli counts in 1-week-old cheeses were between 105 and 107 CFU/g and then reached 107 CFU/g in all 1-month samples, while streptococci were always above 109 CFU/g. A total number of 22 lactobacilli isolates were retained, identified, and characterized by in vitro tests. Species identity was determined by carbohydrate metabolism and species-specific PCR assays. Genetic diversity was explored by random amplified polymorphic DNA (RAPD) PCR analysis. The Lactobacillus strains were assigned to the species L. casei, L. plantarum, L. rhamnosus, L. curvatus, L. fermentum, and L. perolens. All the strains studied tolerated 25 ppm of lysozyme, and most of them showed resistance to 0.3% bile. After incubation in gastric solution (pH 2.0), counts decreased by several log units, ranging from 3.2 to 7.0. The strains were able to grow in the presence of bile salts, but only three isolates were capable of deconjugation. The nonstarter lactobacilli that were assayed fermented the prebiotic substrates (especially lactulose and inulin). Some strains showed high cell hydrophobicity and β-galactosidase activity, as well as inhibitory activity against pathogenic bacteria. It was concluded that most of the lactobacilli isolated in this study demonstrated resistance to biological barriers and physiological characteristics compatible with probiotic properties, which make them suitable for further research in in vivo studies aimed at identifying new probiotic organisms.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3