Rapid Detection Method for Bacillus anthracis Using a Combination of Multiplexed Real-Time PCR and Pyrosequencing and Its Application for Food Biodefense

Author:

JANZEN TIMOTHY W.1,THOMAS MATTHEW C.1,GOJI NORIKO1,SHIELDS MICHAEL J.1,HAHN KRISTEN R.1,AMOAKO KINGSLEY K.1

Affiliation:

1. Canadian Food Inspection Agency, National Centers for Animal Disease, Lethbridge Laboratory, P.O. Box 640, Township Road 9-1, Lethbridge, Alberta, Canada T1J 3Z4

Abstract

Bacillus anthracis, the causative agent of anthrax, has the capacity to form highly resilient spores as part of its life cycle. The potential for the dissemination of these spores using food as a vehicle is a huge public health concern and, hence, requires the development of a foodborne bioterrorism response approach. In this work, we address a critical gap in food biodefense by presenting a novel, combined, sequential method involving the use of real-time PCR and pyrosequencing for the rapid, specific detection of B. anthracis spores in three food matrices: milk, apple juice, and bottled water. The food samples were experimentally inoculated with 40 CFU ml−1, and DNA was extracted from the spores and analyzed after immunomagnetic separation. Applying the combination of multiplex real-time PCR and pyrosequencing, we successfully detected the presence of targets on both of the virulence plasmids and the chromosome. The results showed that DNA amplicons generated from a five-target multiplexed real-time PCR detection using biotin-labeled primers can be used for single-plex pyrosequencing detection. The combined use of multiplexed real-time PCR and pyrosequencing is a novel, rapid detection method for B. anthracis from food and provides a tool for accurate, quantitative identification with potential biodefense applications.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3