Inhibition of Clostridium botulinum Types A and E Toxin Formation by Sodium Nitrite and Sodium Chloride in Hot-Process (Smoked) Salmon

Author:

PELROY G. A.1,EKLUND M. W.1,PARANJPYE R. N.1,SUZUKI E. M.1,PETERSON M. E.1

Affiliation:

1. U.S. Department of Commerce, NOAA, National Marine Fisheries Service, Northwest and Alaska Fisheries Center, Utilization Research Division, 2725 Montlake Boulevard East, Seattle, Washington 98112

Abstract

Sodium nitrite and NaCl were evaluated as inhibitors of outgrowth and toxin production by Clostridium botulinum types A and E in abuse-stored (25°C) hot-process salmon. Salmon steaks were brined in NaCl or NaCl plus NaNO2 and inoculated intramuscularly with spores. Steaks were then heated in a simulated hot-smoke process to internal temperatures of 62.8 to 76.7°C (145 to 170°F) for the final 30 min of a 3- to 4-h process, packaged in oxygen-impermeable film and stored at 25°C. During 7 days of storage, toxin production in steaks inoculated with 102 spores per g was inhibited by more than 3.8% water-phase NaCl for type E and 6.1% for type A. Presence of nitrite substantially reduced the salt level required to prevent toxin production. When steaks had more than 100 ppm NaNO2, only 2.5% NaCl inhibited type E toxin production; 150 ppm NaNO2 and 3.5% NaCl inhibited production of type A toxin. When storage time was lengthened to 14 days or the spore inoculum increased to 104 spores per g, more salt and nitrite were required for inhibition. Residual nitrite in samples stored under refrigeration (3.3°C) did not change during 22 days of storage. Under abuse temperature (25°C), residual nitrite decreased to less than 6 ppm by the 14th day in all samples tested regardless of the original nitrite concentration.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3