Listeria monocytogenes Virulence and Pathogenicity, a Food Safety Perspective

Author:

KATHARIOU SOPHIA1

Affiliation:

1. Food Science Department and Program in Genomic Sciences, North Carolina State University, 339 Schaub Hall, Raleigh, North Carolina 27695, USA

Abstract

Several virulence factors of Listeria monocytogenes have been identified and extensively characterized at the molecular and cell biologic levels, including the hemolysin (listeriolysin O), two distinct phospholipases, a protein (ActA), several internalins, and others. Their study has yielded an impressive amount of information on the mechanisms employed by this facultative intracellular pathogen to interact with mammalian host cells, escape the host cell's killing mechanisms, and spread from one infected cell to others. In addition, several molecular subtyping tools have been developed to facilitate the detection of different strain types and lineages of the pathogen, including those implicated in common-source outbreaks of the disease. Despite these spectacular gains in knowledge, the virulence of L. monocytogenes as a foodborne pathogen remains poorly understood. The available pathogenesis and subtyping data generally fail to provide adequate insight about the virulence of field isolates and the likelihood that a given strain will cause illness. Possible mechanisms for the apparent prevalence of three serotypes (1/2a, 1/2b, and 4b) in human foodborne illness remain unidentified. The propensity of certain strain lineages (epidemic clones) to be implicated in common-source outbreaks and the prevalence of serotype 4b among epidemic-associated strains also remain poorly understood. This review first discusses current progress in understanding the general features of virulence and pathogenesis of L. monocytogenes. Emphasis is then placed on areas of special relevance to the organism's involvement in human foodborne illness, including (i) the relative prevalence of different serotypes and serotype-specific features and genetic markers; (ii) the ability of the organism to respond to environmental stresses of relevance to the food industry (cold, salt, iron depletion, and acid); (iii) the specific features of the major known epidemic-associated lineages; and (iv) the possible reservoirs of the organism in animals and the environment and the pronounced impact of environmental contamination in the food processing facilities. Finally, a discussion is provided on the perceived areas of special need for future research of relevance to food safety, including (i) theoretical modeling studies of niche complexity and contamination in the food processing facilities; (ii) strain databases for comprehensive molecular typing; and (iii) contributions from genomic and proteomic tools, including DNA microarrays for genotyping and expression signatures. Virulence-related genomic and proteomic signatures are expected to emerge from analysis of the genomes at the global level, with the support of adequate epidemiologic data and access to relevant strains.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3