Affiliation:
1. School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, P.O. Box 454, No. 516, Jungong Road, Shanghai 200093, People's Republic of China
Abstract
ABSTRACT
This study was conducted to investigate the growth of Staphylococcus aureus in traditional Chinese flour products under isothermal (10, 15, 20, 25, 30, and 37°C) and nonisothermal (10 to 20, 20 to 30, and 25 to 37°C) conditions. Then, models for the growth of S. aureus in flour products as a function of storage temperature, pH, and water activity (aw) were developed, and the goodness of fit of models was evaluated using the determination coefficient (R2), root mean square error (RMSE), bias factor (Bf), and accuracy factor (Af). Based on the above information, S. aureus growth in steamed bread under nonisothermal conditions was predicted from experiments performed under isothermal conditions. It was shown that different combinations of temperature and aw in flour products have a strong influence on the growth of S. aureus. The modified Gompertz model was found to be more suitable for describing the growth data of S. aureus in flour products, with an R2 of >0.99 and an RMSE of <0.37. The newly developed secondary models were validated, and for the specific growth rate and the lag time, the R2 values were 0.96 and 0.97, Af was 1.12 and 1.06, and Bf was 1.13 and 1.05, respectively. The predicted nonisothermal growth curves of S. aureus were in agreement with the reported experimental ones, with RMSE <0.29, Af value 1.02 to 1.09, and Bf value 0.92 to 0.99. These results indicated that the predictive models provided useful information for the establishment of safety standards and a risk assessment for S. aureus in flour products.
Publisher
International Association for Food Protection
Subject
Microbiology,Food Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献