Genomic Tools for Customized Recovery and Detection of Foodborne Shiga Toxigenic Escherichia coli

Author:

KNOWLES MICHAEL1,STINSON SARA1,LAMBERT DOMINIC1,CARRILLO CATHERINE1,KOZIOL ADAM1,GAUTHIER MARTINE1,BLAIS BURTON1

Affiliation:

1. Research and Development Section, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, 960 Carling Avenue, Building 22, Central Experimental Farm, Ottawa, Ontario, Canada K1A 0C6

Abstract

ABSTRACT Genomic antimicrobial resistance (AMR) prediction tools have the potential to support foodborne illness outbreak investigations through their application in the analysis of bacterial genomes from causative strains. The AMR marker profile of a strain of interest, initially identified in outbreak-associated clinical samples, may serve as the basis for customization of selective enrichment media, facilitating its recovery from samples in a food safety investigation. Different possibilities for AMR analyses include the use of comprehensive AMR gene databases such as the Comprehensive Antibiotic Resistance Database, which can be mined with in-house bioinformatics alignment tools (e.g., Antimicrobial Resistance Marker Identifier), or publicly available tools based on clinically relevant acquired AMR gene databases (e.g., ResFinder). In combination with a previously reported pipeline (SigSeekr) designed to identify specific DNA sequences associated with a particular strain for its rapid identification by PCR, it should be possible to deploy custom recovery and identification tools for the efficient detection of priority pathogens such as Shiga toxigenic Escherichia coli (STEC) outbreak strains within the time frame of an active investigation. Using a laboratory STEC strain as a model, trimethoprim resistance identified by both Antimicrobial Resistance Marker Identifier and ResFinder was used as the basis for its selective recovery against a background of commensal E. coli bacteria in ground beef samples. Enrichment in modified tryptic soy broth containing trimethoprim greatly enhanced the recovery of low numbers of model strain cells inoculated in ground beef samples, as verified by the enumeration of colonies on plating media using a strain-specific PCR method to determine the recovery efficiency for the target strain. We discuss the relative merits of different AMR marker prediction tools for this purpose and describe how such tools can be utilized to good effect in a typical outbreak investigation scenario.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3