Prevalence and Mechanism of Fluoroquinolone Resistance in Escherichia coli Isolated from Swine Feces in Korea

Author:

Hu Yoon Sung1,Shin Sook1,Park Yong Ho1,Park Kun Taek1

Affiliation:

1. Department of Veterinary Microbiology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea

Abstract

ABSTRACT In this study, we investigated the prevalence and fluoroquinolone (FQ) resistance mechanisms in Escherichia coli isolated from swine fecal samples. E. coli isolates were collected from 171 (72.2%) of 237 swine fecal samples. Of these, 59 isolates (34.5%) were confirmed as FQ-resistant E. coli by the disk diffusion method. Of the FQ-resistant isolates, three major FQ resistance mechanisms were investigated. Of the 59 isolates, plasmid-mediated quinolone resistance genes were detected in 9 isolates (15.3%). Efflux pump activity was found in 56 isolates (94.9%); however, this was not correlated with the increased FQ resistance measured by determining the MIC. Point mutations in quinolone resistance–determining regions were the main cause of FQ resistance. All 59 ciprofloxacin-resistant isolates had mutations in quinolone resistance–determining regions; of these 59 isolates, all (100%) had mutations in gyrA, 58 (98.3%) had mutations in parC, 22 (37.3%) had mutations in parE, and none had mutations in gyrB. The predominant mutation type was double mutation in gyrA (Ser83Leu plus mutation in aspartic acid 87), and all FQ-resistant isolates (except one) that had mutations in parC or parE also had double mutations in gyrA. Importantly, the frequencies of multidrug-resistant and extended-spectrum β-lactamase–producing E. coli were significantly higher in the high ciprofloxacin MIC group in this study. Compared with previous studies in Korea, the prevalence of FQ resistance and plasmid-mediated quinolone resistance genes had increased considerably in swine. Although the use of FQ as a feed additive is prohibited in Korea, use for self-treatment and therapeutic purposes has been increasing, which may be responsible for the higher FQ resistance rate observed in this study. Therefore, prudent use of FQ on animal farms is warranted to reduce the evolution of FQ-resistant bacteria in the animal industry.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Reference43 articles.

1. Organic solvent tolerance and fluoroquinolone resistance in Klebsiella pneumoniae clinical isolates;Aathithan;J. Antimicrob. Chemother,2009

2. Mechanism of quinolone action and resistance;Aldred;Biochemistry,2014

3. Commensals upon us;Alekshun;Biochem. Pharmacol,2006

4. Animal and Plant Quarantine Agency (QIA). 2016. National antimicrobial use and monitoring of antimicrobial resistance in livestock and livestock products in 2015. QIA, Gyeongsangbuk-do, Republic of Korea.

5. Analysis of mechanisms of resistance and tolerance of Escherichia coli to enrofloxacin;Bai;Ann. Microbiol,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3