Comparison of Sampling Procedures for Recovery of Listeria monocytogenes from Stainless Steel Food Contact Surfaces

Author:

GÓMEZ DIEGO1,ARIÑO AGUSTÍN1,CARRAMIÑANA JUAN J.1,ROTA CARMINA1,YANGÜELA JAVIER1

Affiliation:

1. Department of Animal Production and Food Science, Veterinary Faculty, University of Zaragoza, c/Miguel Servet 177, 50013 Zaragoza, Spain

Abstract

A number of techniques exist for microbiological sampling of food processing environments in food industries. In the present study the efficacies of nine sampling procedures for the recovery of Listeria monocytogenes from food contact surfaces, including a new sampling device consisting of a miniroller, were evaluated and compared. A stainless steel table was inoculated with L. monocytogenes strain 935 (serovar 4b, human origin) and L. monocytogenes strain 437/07 (serovar 1/2b, food origin), at 105 CFU/100 cm2. L. monocytogenes strain 935 was best recovered with the minirollers (recovery of up to 6.27%), while poor recoveries (<0.30%) were obtained with the towel (one-ply composite tissue), alginate swab, metallic swab, and Petrifilm methods. In the case of L. monocytogenes strain 437/07 the replicate organism detection and counting (RODAC) ALOA contact plates yielded the best recoveries (4.15%), followed by the minirollers (up to 1.52%). Overall, recovery percentages with the minirollers were higher with stomacher homogenization than with Vibromatic agitation. The recovery percentages obtained for the Listeria strain of human origin were higher than those obtained with the food strain for all sampling procedures except Petrifilm and RODAC ALOA. With the miniroller device coated with wool fiber, the recovery of L. monocytogenes can be improved from 2 to 17 times over recoveries obtained with the sponge and cotton swab. This is the first report of a miniroller device for microbiological sampling in the available literature. The novel sampling procedure is convenient to apply on surfaces, is cost-effective, and results in better recovery of L. monocytogenes than do the conventional methods.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3