Clostridium sporogenes PA 3679 and Its Uses in the Derivation of Thermal Processing Schedules for Low-Acid Shelf-Stable Foods and as a Research Model for Proteolytic Clostridium botulinum

Author:

BROWN JANELLE L.1,TRAN-DINH NAI1,CHAPMAN BELINDA1

Affiliation:

1. CSIRO Food and Nutritional Sciences, P.O. Box 52, North Ryde, New South Wales 1670, Australia

Abstract

The putrefactive anaerobe Clostridium sporogenes PA 3679 has been widely used as a nontoxigenic surrogate for proteolytic Clostridium botulinum in the validation of thermal processes for low-acid shelf-stable foods, as a target organism in the derivation of thermal processes that reduce the risk of spoilage of such foods to an acceptable level, and as a research model for proteolytic strains of C. botulinum. Despite the importance of this organism, our knowledge of it has remained fragmented. In this article we draw together the literature associated with PA 3679 and discuss the identity of this organism, the phylogenetic relationships that exist between PA 3679 and various strains of C. sporogenes and proteolytic C. botulinum, the heat resistance characteristics of PA 3679, the advantages and limitations associated with its use in the derivation of thermal processing schedules, and the knowledge gaps and opportunities that exist with regard to its use as a research model for proteolytic C. botulinum. Phylogenetic analysis reviewed here suggests that PA 3679 is more closely related to various strains of proteolytic C. botulinum than to selected strains, including the type strain, of C. sporogenes. Even though PA 3679 is demonstrably nontoxigenic, the genetic basis of this nontoxigenic status remains to be elucidated, and the genetic sequence of this microorganism appears to be the key knowledge gap remaining to be filled. Our comprehensive review of comparative heat resistance data gathered for PA 3679 and proteolytic strains of C. botulinum over the past 100 years supports the practice of using PA 3679 as a (typically fail-safe) thermal processing surrogate for proteolytic C. botulinum.

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3