Affiliation:
1. Institute of Health and Environment, Department of Environmental Health, School of Public Health, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
Abstract
We investigated the resistance of murine norovirus (MNV) and coliphage MS2, a culturable human norovirus surrogate, to temperature, salt, and pH. Virus inactivation was measured by plaque, real-time TaqMan reverse transcription (RT) PCR, and long-template RT-PCR assays. Both MNV and MS2 were rapidly inactivated at temperatures above 60°C. Similarly, MNV tolerated low salt concentrations (0.3% NaCl) to a greater degree than high salt concentrations (3.3 to 6.3% NaCl). MNV was relatively resistant to strong acidic conditions (pH 2) and was more tolerant of slightly acidic (pH 4) or neutral (pH 7) conditions. In contrast, MS2 was resistant to high salinity. Overall, temperature had a greater effect on infectivity than salt or low pH. Additionally, temperature and low pH had a synergistic effect on MNV infectivity. Both real-time and long-template RT-PCR assays significantly underestimated the inactivation by temperature, salt, and pH. The inactivation kinetics of both MNV and MS2 under various environmental conditions gave a good fit by the Weibull model (R2 > 0.9). This study suggests both the capacity of infectious human norovirus to persist in the face of various environmental conditions and its sensitivity to high temperatures, which may provide a mechanism of protection against this virus.
Publisher
International Association for Food Protection
Subject
Microbiology,Food Science
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献