Application of Chitosan Microparticles against Human Norovirus

Author:

BARNES CANDACE1ORCID,BARBER REBECCA2,SCHNEIDER KEITH R.1ORCID,DANYLUK MICHELLE D.3ORCID,WRIGHT ANITA C.1,JONES MELISSA K.2,MONTAZERI NAIM1ORCID

Affiliation:

1. Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611

2. Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611

3. Food Science and Human Nutrition Department, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850, USA

Abstract

ABSTRACT Human norovirus (HuNoV) is the leading cause of foodborne illness outbreaks and the second most common cause of waterborne infections in the United States. The goal of this research was to investigate the antiviral activity of chitosan microparticles (CMs) against HuNoV GII.4 Sydney and its cultivable surrogate Tulane virus (TuV) in suspensions mimicking fecally contaminated water. CMs were prepared by cross-linking chitosan molecules with sodium sulfate, and the antiviral activity of CMs was assessed with an infectivity assay on TuV and by quantitative reverse transcription PCR on TuV and HuNoV. A 3% CM suspension in phosphate-buffered saline (pH 7.2) bound to TuV particles but had a negligible impact on virus infectivity (P > 0.05). A 10-min contact time resulted in a 1.5-log reduction in genomic copies per mL of TuV and HuNoV in fecal suspensions (P < 0.05). Despite the negligible impact on viral infectivity, CMs can moderately bind to infectious virus particles and help purify environmental water by removing these particles. In this study, TuV was a suitable surrogate for HuNoV with similar log reductions in fecal suspension. These findings highlight the potential application of CM as a novel treatment to minimize the spread of waterborne viral pathogens. HIGHLIGHTS

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3