Methods To Improve Molecular Detection of Salmonella in Complex Herbal Matrices Containing Inhibitors

Author:

KOPRINAROVA MIGLENA1ORCID

Affiliation:

1. Institute of Molecular Biology “Acad. Roumen Tsanev,” Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria

Abstract

ABSTRACT Salmonella is one of the main causes of foodborne diseases worldwide. Molecular tests such as the PCR assay are rapid and sensitive and are increasingly becoming the preferred method for pathogen detection. However, the presence in the analyzed samples of substances that reduce the sensitivity of the assay or totally inhibit PCR amplification might result in failure of pathogen detection. Using a multiplex real-time PCR assay, I investigated the detection of Salmonella enterica serovar Typhimurium in three herbal matrices containing inhibiting substances: (i) chamomile (Matricaria recutita), (ii) sage (Salvia officinalis), and (iii) mint (Menthae piperitae). Internal positive controls in the multiplex PCR reactions indicated the degree of inhibition. All three herbs inhibited PCR amplification at the standard matrix concentration (10% suspension). I applied and compared four approaches for overcoming the negative effect of the matrices on the PCR detection of Salmonella. The efficiency strongly depended on the matrix and the method used for removing the inhibitory substances. By using a series of centrifugation steps combined with a direct PCR, I removed the PCR inhibitors and successfully detected the pathogen in each of the tested matrices. This approach did not significantly decrease the sensitivity of the PCR assay, and the detection of the pathogen was with a quantification cycle delay of only 1.48 ± 1.05 cycles compared with the control. Thus, the proposed simple, efficient, reliable, quick, and cost-effective method allowed for removal of PCR inhibitors and subsequent detection of foodborne bacterial pathogens in complex matrices containing PCR inhibitors. HIGHLIGHTS

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3