Screening of Antifungal Lactic Acid Bacteria as Bioprotective Cultures in Yogurt and a Whey Beverage

Author:

XU RIHUA1ORCID,SA REN1,JIA JUNWEI1,LI LANLAN1,WANG XIAO1,LIU GUORONG2

Affiliation:

1. State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, People's Republic of China 010070; and

2. Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, People's Republic of China 100048

Abstract

ABSTRACT The demand for preservative-free food products is rising, and biopreservation is a potential alternative to replace or reduce the use of chemical preservatives. The objectives of this study were to assess the antifungal activity of lactic acid bacteria (LAB; n = 98) and the efficacy and applicability of the chosen bioprotective cultures against fungal spoilers in dairy products. First, 14 antifungal strains were preliminarily screened by in vitro tests against Pichia pastoris D3, Aspergillus niger D1, Geotrichum candidum N1, Kluyveromyces marxianus W1, and Penicillium chrysogenum B1 and validated by challenge tests in yogurt, indicating that the fungal-inhibiting activity of LAB was species specific and yogurt fermented with antifungal LAB cultures was more effective in extending shelf life. Second, the chosen 14 LAB strains were identified by the 16S rDNA sequence analysis and carbohydrate fermentation test. The results were as follows: nine strains were Lactobacillus plantarum, three were Lactobacillus paracasei, one was Enterococus faecium, and one was Lactobacillus rhamnosus. Among them, active L. plantarum N7 was the chosen and studied factor affecting antifungal activity by using the response surface methodology. Finally, in situ tests were conducted to validate the activity of L. plantarum N7 in actual dairy products (whey beverages). Physicochemical and microbial indices of whey beverages during storage indicated that antifungal L. plantarum N7 could slow yeast growth and be candidates of interest for industrial applications. HIGHLIGHTS

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3