Methodology for malleable applications on distributed memory systems

Author:

,Aguilar Mena JimmyORCID

Abstract

(English) The dominant programming approach for scientific and industrial computing on clusters is MPI+X. While there are a variety of approaches within the node, denoted by the ``X'', Message Passing interface (MPI) is the standard for programming multiple nodes with distributed memory. This thesis argues that the OmpSs-2 tasking model can be extended beyond the node to naturally support distributed memory, with three benefits: First, at small to medium scale the tasking model is a simpler and more productive alternative to MPI. It eliminates the need to distribute the data explicitly and convert all dependencies into explicit message passing. It also avoids the complexity of hybrid programming using MPI+X. Second, the ability to offload parts of the computation among the nodes enables the runtime to automatically balance the loads in a full-scale MPI+X program. This approach does not require a cost model, and it is able to transparently balance the computational loads across the whole program, on all its nodes. Third, because the runtime handles all low-level aspects of data distribution and communication, it can change the resource allocation dynamically, in a way that is transparent to the application. This thesis describes the design, development and evaluation of OmpSs-2@Cluster, a programming model and runtime system that extends the OmpSs-2 model to allow a virtually unmodified OmpSs-2 program to run across multiple distributed memory nodes. For well-balanced applications it provides similar performance to MPI+OpenMP on up to 16 nodes, and it improves performance by up to 2x for irregular and unbalanced applications like Cholesky factorization. This work also extended OmpSs-2@Cluster for interoperability with MPI and Barcelona Supercomputing Center (BSC)'s state-of-the-art Dynamic Load Balance (DLB) library in order to dynamically balance MPI+OmpSs-2 applications by transparently offloading tasks among nodes. This approach reduces the execution time of a microscale solid mechanics application by 46% on 64 nodes and on a synthetic benchmark, it is within 10% of perfect load balancing on up to 8 nodes. Finally, the runtime was extended to transparently support malleability for pure OmpSs-2@Cluster programs and interoperate with the Resources Management System (RMS). The only change to the application is to explicitly call an API function to control the addition or removal of nodes. In this regard we additionally provide the runtime with the ability to semi-transparently save and recover part of the application status to perform checkpoint and restart. Such a feature hides the complexity of data redistribution and parallel IO from the user while allowing the program to recover and continue previous executions. Our work is a starting point for future research on fault tolerance. In summary, OmpSs-2@Cluster expands the OmpSs-2 programming model to encompass distributed memory clusters. It allows an existing OmpSs-2 program, with few if any changes, to run across multiple nodes. OmpSs-2@Cluster supports transparent multi-node dynamic load balancing for MPI+OmpSs-2 programs, and enables semi-transparent malleability for OmpSs-2@Cluster programs. The runtime system has a high level of stability and performance, and it opens several avenues for future work. (Español) El modelo de programación dominante para clusters tanto en ciencia como industria es actualmente MPI+X. A pesar de que hay alguna variedad de alternativas para programar dentro de un nodo (indicado por la "X"), el estandar para programar múltiples nodos con memoria distribuida sigue siendo Message Passing Interface (MPI). Esta tesis propone la extensión del modelo de programación basado en tareas OmpSs-2 para su funcionamiento en sistemas de memoria distribuida, destacando 3 beneficios principales: En primer lugar; a pequeña y mediana escala, un modelo basado en tareas es más simple y productivo que MPI y elimina la necesidad de distribuir los datos explícitamente y convertir todas las dependencias en mensajes. Además, evita la complejidad de la programacion híbrida MPI+X. En segundo lugar; la capacidad de enviar partes del cálculo entre los nodos permite a la librería balancear la carga de trabajo en programas MPI+X a gran escala. Este enfoque no necesita un modelo de coste y permite equilibrar cargas transversalmente en todo el programa y todos los nodos. En tercer lugar; teniendo en cuenta que es la librería quien maneja todos los aspectos relacionados con distribución y transferencia de datos, es posible la modificación dinámica y transparente de los recursos que utiliza la aplicación. Esta tesis describe el diseño, desarrollo y evaluación de OmpSs-2@Cluster; un modelo de programación y librería que extiende OmpSs-2 permitiendo la ejecución de programas OmpSs-2 existentes en múltiples nodos sin prácticamente necesidad de modificarlos. Para aplicaciones balanceadas, este modelo proporciona un rendimiento similar a MPI+OpenMP hasta 16 nodos y duplica el rendimiento en aplicaciones irregulares o desbalanceadas como la factorización de Cholesky. Este trabajo incluye la extensión de OmpSs-2@Cluster para interactuar con MPI y la librería de balanceo de carga Dynamic Load Balancing (DLB) desarrollada en el Barcelona Supercomputing Center (BSC). De este modo es posible equilibrar aplicaciones MPI+OmpSs-2 mediante la transferencia transparente de tareas entre nodos. Este enfoque reduce el tiempo de ejecución de una aplicación de mecánica de sólidos a micro-escala en un 46% en 64 nodos; en algunos experimentos hasta 8 nodos se pudo equilibrar perfectamente la carga con una diferencia inferior al 10% del equilibrio perfecto. Finalmente, se implementó otra extensión de la librería para realizar operaciones de maleabilidad en programas OmpSs-2@Cluster e interactuar con el Sistema de Manejo de Recursos (RMS). El único cambio requerido en la aplicación es la llamada explicita a una función de la interfaz que controla la adición o eliminación de nodos. Además, se agregó la funcionalidad de guardar y recuperar parte del estado de la aplicación de forma semitransparente con el objetivo de realizar operaciones de salva-reinicio. Dicha funcionalidad oculta al usuario la complejidad de la redistribución de datos y las operaciones de lectura-escritura en paralelo, mientras permite al programa recuperar y continuar ejecuciones previas. Este es un punto de partida para futuras investigaciones en tolerancia a fallos. En resumen, OmpSs-2@Cluster amplía el modelo de programación de OmpSs-2 para abarcar sistemas de memoria distribuida. El modelo permite la ejecución de programas OmpSs-2 en múltiples nodos prácticamente sin necesidad de modificarlos. OmpSs-2@Cluster permite además el balanceo dinámico de carga en aplicaciones híbridas MPI+OmpSs-2 ejecutadas en varios nodos y es capaz de realizar maleabilidad semi-transparente en programas OmpSs-2@Cluster puros. La librería tiene un niveles de rendimiento y estabilidad altos y abre varios caminos para trabajos futuro.

Publisher

Universitat Politècnica de Catalunya

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Malleability in Modern HPC Systems: Current Experiences, Challenges, and Future Opportunities;IEEE Transactions on Parallel and Distributed Systems;2024-09

2. Dynamic management of processes and communicators in malleable MPI applications;2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS);2023-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3