Design aesthetics recommender system based on customer profile and wanted affect

Author:

Benaissa Brahim,Kobayashi Masakazu

Abstract

Product recommendation systems have been instrumental in online commerce since the early days. Their development is expanded further with the help of big data and advanced deep learning methods, where consumer profiling is central. The interest of the consumer can now be predicted based on the personal past choices and the choices of similar consumers. However, what is currently defined as a choice is based on quantifiable data, like the product features, cost, and type. This paper investigates the possibility of profiling customers based on the preferred product design and wanted affects. We considered the case of vase design, where we study individual Kansei of each design. The personal aspects of the consumer considered in this study were decided based on our literature review conclusions on the consumer response to product design. We build a representative consumer model that constitutes the recommendation system's core using deep learning. It asks the new consumers to provide what affect they are looking for, through Kansei adjectives, and recommend; as a result, the aesthetic design that will most likely cause that affect.

Publisher

Kansei Engineering and Emotion Research (KEER)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3