Large-scale Volcanism and the Heat Death of Terrestrial Worlds

Author:

Way M. J.ORCID,Ernst Richard E.,Scargle Jeffrey D.ORCID

Abstract

Abstract Large-scale volcanism has played a critical role in the long-term habitability of Earth. Contrary to widely held belief, volcanism, rather than impactors, has had the greatest influence on and bears most of the responsibility for large-scale mass extinction events throughout Earth’s history. We examine the timing of large igneous provinces (LIPs) throughout Earth’s history to estimate the likelihood of nearly simultaneous events that could drive a planet into an extreme moist or runaway greenhouse, leading to the end of volatile cycling and causing the heat death of formerly temperate terrestrial worlds. In one approach, we make a conservative estimate of the rate at which sets of near-simultaneous LIPs (pairs, triplets, and quartets) occur in a random history statistically the same as Earth’s. We find that LIPs closer in time than 0.1–1 million yr are likely; significantly, this is less than the time over which terrestrial LIP environmental effects are known to persist. In another approach, we assess the cumulative effects with simulated time series consisting of randomly occurring LIP events with realistic time profiles. Both approaches support the conjecture that environmental impacts of LIPs, while narrowly avoiding grave effects on the climate history of Earth, could have been responsible for the heat death of our sister world Venus.

Funder

National Aeronautics and Space Administration

Canadian NSERC Discovery Grant

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geological history of the Atira Mons large shield volcano, Beta Regio, Venus.;Planetary and Space Science;2024-05

2. Studies of the Massive Greenhouse Effect on Venus;Chemické listy;2024-01-15

3. The evolutionary divergence of Mars, Venus, and Earth;Reference Module in Earth Systems and Environmental Sciences;2024

4. Venus;Reference Module in Earth Systems and Environmental Sciences;2024

5. Interior Controls on the Habitability of Rocky Planets;Space: Science & Technology;2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3