A Shallow-water Model Exploration of Atmospheric Circulation on Sub-Neptunes: Effects of Radiative Forcing and Rotation Period

Author:

Landgren EkaterinaORCID,Nadeau AliceORCID,Lewis NikoleORCID,Kataria TiffanyORCID,Hitchcock PeterORCID

Abstract

Abstract Sub-Neptune-type exoplanets are abundant in our Galaxy yet have no solar system analogs. They exist in a broad range of stellar forcing and rotational regimes that are distinctly different from solar system planets and more commonly studied hot Jupiters. Here we present simulations that explore global atmospheric circulation of sub-Neptunes generated with a two-dimensional shallow-water model, SWAMPE. We explore the circulation regimes of synchronously rotating sub-Neptunes with a focus on the interaction of planetary rotation rate and radiative timescale in a variety of stellar insolations. In highly irradiated, short-timescale regimes, our models exhibit high day–night geopotential contrasts. As the timescales become longer, the geopotential contrasts and longitudinal variability decrease, while temporal variability increases. The transition from day-to-night flow to jet-dominated flow is primarily driven by the radiative timescale. Strong- and medium-forcing regimes exhibit transitions between day-to-night flow and jet-dominated flow at similar points in the parameter space. The weak-forcing regime differs owing to comparatively stronger rotational effects. Planetary rotation period dominates in determining equator-to-pole geopotential contrast. Our simulations exhibit higher time variability when either radiative timescale or rotation period is long.

Funder

Space Telescope Science Institute

NASA ∣ Jet Propulsion Laboratory

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3