Modeling Saturn’s D68 Clumps as a Co-orbital Satellite System

Author:

A’Hearn Joseph A.ORCID,Hedman Matthew M.ORCID,Hamilton Douglas P.ORCID

Abstract

Abstract The D68 ringlet is the innermost feature in Saturn’s rings. Four clumps that appeared in D68 around 2014 remained evenly spaced about 30° apart and moved very slowly relative to each other from 2014 up until the last measurements were taken in 2017. D68's narrowness and the distribution of clumps could either indicate that we have a collection of source bodies in a co-orbital configuration or imply that an outside force confines the observed dust and any source bodies. In this paper we explore the possibility that these four clumps arose from four source bodies in a co-orbital configuration. We find that there are no solutions with four masses that produce the observed spacings. We therefore consider whether an unseen fifth co-orbital object could account for the discrepancies in the angular separations and approach a stable stationary configuration. We find a range of solutions for five co-orbital objects where their mass ratios depend on the assumed location of the fifth mass. Numerical simulations of five co-orbitals are highly sensitive to initial conditions, especially for the range of masses we would expect the D68 clumps to have. The fragility of our D68 co-orbital system model implies that there is probably some outside force confining the material in this ringlet.

Funder

NASA ∣ Science Mission Directorate

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Composition of Saturn’s Rings;Space Science Reviews;2024-09

2. Ring Seismology of the Ice Giants Uranus and Neptune;The Planetary Science Journal;2022-08-01

3. Numerical analysis of processes for the formation of moonlets confining the arcs of Neptune;Monthly Notices of the Royal Astronomical Society;2022-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3