Evidence for Transient Atmospheres during Eruptive Outgassing on the Moon

Author:

van Kooten Elishevah M. M. E.ORCID,Moynier Frédéric,Day James M. D.

Abstract

Abstract Events following the giant impact formation of the Moon are thought to have led to volatile depletion and concurrent mass-dependent fractionation of the isotopes of moderately volatile elements (MVE). The detailed processes and conditions surrounding this episode remain obscured and are not unified by a single model for all volatile elements and compounds. Using available data, including new Zn isotope data for eight lunar samples, we demonstrate that the isotopic fractionation of MVE in the Moon is best expressed by nonideal Rayleigh distillation, approaching the fractionation factor α using the reduced masses of the evaporated isotopologs. With these calculations, a best fit for the data is obtained when the lunar MVE isotope data are normalized to ordinary or enstatite chondrites ( ), rather than a bulk silicate Earth composition. This analysis further indicates that the parent body from which the Moon formed cannot have partitioned S into its core based on S isotope compositions of lunar rocks. The best fit between and modeled nonideal Rayleigh fractionation is defined by a slope that corresponds to a saturation index of 90% ± 4%. In contrast, the older Highland suite is defined by a saturation index of 75% ± 2%, suggesting that the vapor phase pressure was higher during mare basalt eruptions. This provides the first tangible evidence that the Moon was veiled by a thin atmosphere during mare basalt eruption events spanning at least from 3.8 to 3 billion years ago and implies that MVE isotope fractionation dominantly occurred after the Moon had accreted.

Funder

H2020 Marie Curie Individual Fellowship

ERC H2020

UnivEarthS Labex

Ile de France Sesame

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3